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Abstract— In this paper a novel method is proposed for
state estimation of nonlinear systems using high-gain observers
(HGOs) and adaptive techniques. In this regard, Multiple
HGOs (MHGO) are run simultaneously, and the information
obtained from individual observers are combined adaptively.
To be able to suitably combine the state estimations, it is first
proved that there exist some constant coefficients that provide
the perfect estimation. Then, the RLS algorithm is employed to
find those coefficients. The convergence of the state estimations
to the system states is guaranteed, and it is shown that the
MHGO is able to attenuate the inherent peaking phenomenon
in HGOs. Finally, the simulation results are presented which
show the superiority of the proposed MHGO method in state
estimation and improving the transient response.

I. INTRODUCTION

High-Gain Observer (HGO) is a powerful tool used in
control theory [1], [2]. In the past few decades, a wide
range of control problems are solved using this structure,
e.g., fault detection and isolation [3], control of nonlinear
systems [4], parameter estimation [5]. One of the unique
features of HGO that has brought such a broad attention to
it is that the separation principal holds in HGO-based control
strategies. This condition is first discussed in details in [6],
[7], and some improvements/extensions are made on that in
[8]. In spite of this fact, an inherent drawback of HGO is
the existence of undesired peaks in the transient response of
the estimated states, known as the peaking phenomenon. In
[9], this issue is studied and it is shown that the interaction
of this behaviour with system nonlinearities could induce
destructive effects on the performance of the overall system.

It is well-known that transient response of adaptive sys-
tems is oscillatory during the learning phase, which is not
preferable from practical point of view [10]. To overcome
this problem, many investigations have been launched. The
idea of utilizing multiple models is used in [11] to identify
the plant dynamics rapidly. In this scheme a performance
criteria is defined based on which one of the identified
models is selected at any instant. However, to access an
accurate/satisfactory identification, it is required to use a
large number of models. Moreover, another drawback is
that the employed models do not cooperate with each other.
For linear time invariant systems, a novel scheme, called

M. Shakarami is with ENTEG, University of Groningen, 9747 AG
Groningen, The Netherlands (e-mail: m.shakarami@rug.nl).

K. Esfandiari is with the Center for Systems Science, Yale University,
New Haven, CT 06511, USA (e-mail: kasra.esfandiari@yale.edu).

A.A. Suratgar and H.A. Talebi are with the Center of Excellence
on Control and Robotics, Electrical Engineering Department, Amirkabir
University of Technology (Tehran Polytechnic), Tehran 15914, Iran (e-mail:
a-suratgar@aut.ac.ir; alit@aut.ac.ir).

second-level adaptation method, is presented in [12] that
utilizes the information obtained from multiple parameter
estimators to overcome the above challenges. This approach
is able to improve the transient response since it uses a
convex combination of the individual estimators’ information
(information is fused at any instant). In the past several years,
the second-level adaptation method attracted the attention,
and many researchers started utilizing this concept in solving
the problems raised in system theory. In [13], this idea is
employed to design a fast and smooth adaptive controller for
LTI systems having parameter uncertainties. Control problem
of a class of nonlinear systems with large parametric uncer-
tainties is studied in [14], in which multiple models with
second-level adaptation are used for identification purposes
that resulted in a better transient performance as well as fast
convergence.

In this paper, HGO’s estimation capabilities are combined
together with the second-level adaptation to reconstruct the
states of nonlinear systems rapidly and accurately. The
main contributions of this paper are: I) A new observation
methodology is proposed for nonlinear systems using mul-
tiple HGOs (MHGO) and second-level adaptation method.
II) Unlike the previously developed second-level adaptation-
based methods, which are aimed at estimating unknown
constant parameters, the proposed structure deals with the
state estimation problem. III) The existence of some unknown
constant parameters enabling us to estimate the system states
exactly is guaranteed. IV) The stability of the proposed
method as well as the convergence of state estimations to
system states are proved. V) It is proved that MHGO can
proved an estimation with more preferable transient response
in comparison to single HGO.

II. THE MAIN RESULTS

This section consists of problem formulation and its solu-
tion using HGO. Then, the structure of the proposed MHGO
is introduced, and the existence of ideal state estimation
using the proposed strategy is discussed. Afterwards, the
stability of MHGO and the convergence of state estimations
to plant states is shown. Then, the performance of the
proposed method is investigated.

A. State Estimation of Nonlinear Systems by HGO

Consider the following nonafine SISO nonlinear system

ẋ = Ax+Bf(x, u)

y = Cx
(1)



where x ∈ Rn is the state vector, u ∈ R is the input signal,
y ∈ R is the output of system, and f(x, u) is a nonlinear
function. The n× n matrix A, the n× 1 vector B, and the
1× n vector C are given by

A =

[
0(n−1)×1 In−1

0 01×(n−1)

]
, B =

[
0(n−1)×1

1

]
,

C =
[
1 01×(n−1)

]
It is assumed that f(x, u) is locally Lipschitz in (x, u) for

all x ∈ D ⊆ Rn and u ∈ B ⊆ R, and f(0, 0) = 0. Thus,
the origin is an equilibrium point of the system [8].

In order to present the proposed method, we need to
provide the principle of HGO. A HGO that is able to estimate
the states of (1), x̂, has the following form [2], [15]:

˙̂x = Ax̂+Bf0(x̂, u) +H(y − Cx̂) (2)

with H = [κ1/ϵ κ2/ϵ
2 · · · κn/ϵ

n]T , where ϵ ∈ (0, 1]
and κis are chosen such that the roots of sn + κ1s

n−1 +
· · · + κn−1s + κn = 0 are in the open left-half plane. This
guarantees that A−HC is a Hurwitz matrix. The nonlinear
function f0(·) is a saturated version of f(·) which agrees
with f(·) on the domain of interest, i.e., D × B [15].

Now by defining estimation error as x̃ = x − x̂, its
dynamics can be obtained by subtracting (2) from (1) as
follows:

˙̃x = A0x̃+B(f(x, u)− f0(x̂, u)) (3)

where A0 = A − HC. It can be shown that there exists
ϵ∗0 > 0 such that, for every 0 < ϵ ≤ ϵ∗0 and any admissible
x ∈ D and u ∈ B, the effect of f(x, u) − f0(x̂, u) on x̃ is
rejected. According to the fact that A0 is a Hurwitz matrix,
it can be shown that limt→∞ x̃(t) = 0 [2], [15].

B. The Structure of the Proposed MHGO
Before presenting the proposed structure, it is required to

consider the following Lemma.
Lemma 1 ([16]): Let Q be a set in a linear space L. The

convex hull K of Q is the smallest convex set containing Q.
For ai ∈ Q with i = 1, · · · ,m, the convex hull of ais is

given by K = {
m∑
i=1

βiai} for βi ≥ 0 and
∑m

i=1 βi = 1.

The goal is to obtain an state estimation that uses infor-
mation provided by multiple HGOs in the sense of convex
combination. Toward this end, we propose the employing of
N high-gain observers with the following structure

˙̂xi(α, t) = Ax̂i(α, t) +H(y(t)− Cx̂i(α, t))

+Bf0(
N∑
i=1

αix̂i(α, t), u(t)), x̂i(α, 0) = x̂i(0)
(4)

where i = 1, · · · , N , x̂i is state estimation from the ith
observer, αi ≥ 0 such that

∑N
i=1 αi = 1, and α =[

α1 α2 · · · αN

]T . The notation x̂i(α) is chosen to show
that x̂is are dependent on α. In order to employ the obtained
N state estimations, the following combination of them is
considered as the final state estimation

x̂o(t) =
N∑
i=1

αix̂i(α, t) (5)

As it can be seen, the proposed method utilizes the obtained
estimations from N observers for providing a more accurate
state estimation. On the other hand, it is required to prove that
this structure is able to yield preferable estimations, which
is the goal of subsequent sections.

C. Existence of Ideal State Estimation

This section investigates the capability of the proposed
observer structure (4) in estimating actual system states.
Toward this end, we need to show that there exist constant
α∗
i s so that when αis are set equal to them, the ensuing

estimation satisfies the equality of x(t) = x̂o(t) for all t ≥ 0.
To achieve this goal, the analysis is divided into two stages.
First, it is needed to show that there exist α∗

i s such that
x(t = 0) = x̂o(t = 0) if αi = α∗

i s. Next, it will be also
shown that the equality, x(t) = x̂o(t), holds for all t > 0.

First Step (t = 0): In order to accomplish the first step of
the proof, it is required to consider the properties of convex
hull of a set in linear space. Then, by employing Lemma 1,
it can be seen that if x̂i(0)s are chosen so that x(0) is in the
convex hull K of x̂i(0)s, then some α∗

i s exist such that

x(0) =
∑N

i=1
α∗
i x̂i(0) (6)

This concludes the first step. Also, note that for the satisfac-
tion of the preceding equality, at least N = n+ 1 observers
are required; where n is the number of state variables.

Second Step (t > 0): Since this step is aimed at providing
the analysis for t > 0, it is required to obtain the observation
error dynamics. Subtracting (4) from (1), results in

˙̃xi(α, t) = A0x̃i(α, t)

+B(f(x(t), u(t))− f0(
N∑
i=1

αix̂i(α, t), u(t))
(7)

where x̃i = x − x̂i denotes observation error of the ith
observer. To obtain the error dynamics of MHGO, one can
use (5),

∑N
i=1 αi = 1, and x̃o = x − x̂o to get x̃o(t) =∑N

i=1 αix̃i(α, t). Since αis are constants, taking the time
derivative of the preceding equation and using (7) yields

˙̃xo = A0x̃o +B(f(x, u)− f0(x̂o, u)) (8)

The next lemma is presented to wrap the second step up.
Lemma 2: Let for (1), x ∈ D, u ∈ B, and the initial

conditions of HGOs (4) be chosen such that x(0) is in their
convex hull K. Then there exist some α∗

i s such that by
choosing αi = α∗

i s, the obtained state estimation from (5) is
equal to x(t) for all t ≥ 0.
Proof. Consider scaled estimation error

η(i) =
x(i) − x̂o(i)

ϵn−i
, i = 1, · · · , n

where x(i) and x̂o(i) are the ith elements of x and x̂o,
respectively.Therefore, we have

D(ϵ)η = x− x̂o

D(ϵ) = diag(ϵn−1, ϵn−2, · · · , ϵ, 1)
(9)



where η = [η(1) · · · η(n)]
T . Using (8) and (9), one has

ϵη̇ = A1η + ϵB(f(x, u)− f0(x̂o, u)) (10)

where A1 = ϵD(ϵ)−1A0D(ϵ). Note that since κis are chosen
such that A0 is a Hurwitz matrix, A1 is also a Hurwitz
matrix. With regard to this fact, one can consider a Lyapunov
function candidate V (η) = ηTP1η where P1 is a positive
definite matrix satisfying AT

1 P1 + P1A1 = −I . By taking
the time derivative of V (η) and using (10), we have

V̇ (η) = −1

ϵ
ηT η + 2BT (f(x, u)− f0(x̂o, u))P1η (11)

Since in the domain D × B, f0 agrees with f , and both are
locally Lipschitz, one can get

∥f(x, u)− f0(x̂o, u)∥ ≤ L1∥η∥ (12)

where L1 > 0 is a Lipschitz constant. It is worth noting that
∥D(ϵ)∥ = 1 is used for obtaining the previous equation. By
using (12) and ∥B∥ = 1, V̇ (η) can be expressed as

V̇ (η) ≤ −1

ϵ
∥η∥2 + 2L1∥P1∥∥η∥2 (13)

The following equation can be considered

λmin(P1)∥η∥2 ≤ V (η) ≤ λmax(P1)∥η∥2 (14)

where λmin(P1) and λmax(P1) are the smallest and the
largest eigenvalues of P1, respectively. Now, by using (13)
and (14), it can be shown that V̇ (η) ≤ k1V (η) where
k1 = − 1

ϵλmax(P1)
+ 2 L1

λmin(P1)
∥P1∥. Therefore, one has

V (t) ≤ ek1tV (0). (15)

Furthermore, one can get the following inequality by incor-
porating (14) and (15).

λmin(P1)∥η(t)∥2 ≤ ek1tλmax(P1)∥η(0)∥2 (16)

On the other hand, from (9) it is obtained

ϵ2(n−1)∥η∥2 ≤ ∥x− x̂o∥2 ≤ ∥η∥2. (17)

Finally, using (16) and (17) and performing some basic
manipulations result in

∥x(t)− x̂o(t)∥ ≤ k2
ϵn−1

e
1
2k1t∥x(0)− x̂o(0)∥ (18)

where k2 =
√

λmax(P1)
λmin(P1)

. Since x̂i(0)s are chosen such that
x(0) is in their convex hull, there exist αi = α∗

i s such that
(6) is valid (refer to Lemma 1). Consequently, the right hand
side of (18) is zero, which completes the proof. �

From Lemma 2 it can be realized that if x(0) is in the
convex hull K of x̂i(0)s, there are some positive constant
αi = α∗

i s that provide perfect state estimation. This property
can be utilized to transform the problem of state estimation
to estimation of some constant parameters.

D. Finding αis

Till now, the conditions based on which there exist α∗
i s

such that the perfect state estimation can be achieved are
provided. Now, by choosing αi = α∗

i s, we have

x(t) =

N∑
i=1

α∗
i x̂i(α

∗, t), ∀t ≥ 0 (19)

where α∗ =
[
α∗
1 α∗

2 · · · α∗
N

]T . However, one cannot
use this selection since α∗

i s are unknown. Hence obtaining an
appropriate estimation of α∗

i s is needed for state estimation.
In this regard, let us use

∑N
i=1 α

∗
i = 1 and rearrange (19)

as
∑N

i=1 α
∗
i x̃i(α

∗, t) = 0. Furthermore, one can consider
α∗
N = 1−

∑N−1
i=1 α∗

i and get

N−1∑
i=1

α∗
i (x̃i(α

∗, t)− x̃N (α∗, t)) = −x̃N (α∗, t) (20)

By using x̃i(α
∗, t)− x̃N (α∗, t) = x̂N (α∗, t)− x̂i(α

∗, t) and
(4), it can be obtained

˙̂xN (α∗, t)− ˙̂xi(α
∗, t) = A0(x̂N (α∗, t)− x̂i(α

∗, t)) (21)

with A0 = A −HC. From the preceding equation one can
see that x̂N (α∗, t)− x̂i(α

∗, t) is the state of a linear system
with the initial condition of x̂N (0) − x̂i(0). Therefore, it
is independent of α∗, and if a matrix E is defined such
that its ith column is x̂N (α∗, t) − x̂i(α

∗, t) , it is also
independent of α∗. By utilizing this fact and defining ᾱ∗ =
[α∗

1 · · · α∗
N−1]

T , one can rewrite (20) as follows

E(t)ᾱ∗ = −x̃N (ᾱ∗, t) (22)

Since x and x̂N (ᾱ∗, t) are unknown, one cannot employ
the previous equation for estimating ᾱ∗. For solving this
problem, we premultiply (22) by C to get

CE(t)ᾱ∗ = −ỹN (ᾱ∗, t) (23)

where ỹN (ᾱ∗, t) = y(t) − Cx̂N (ᾱ∗, t). In the previous
equation, x̂N (ᾱ∗, t) is still unknown, which makes the uti-
lization of the Recursive Least Squares (RLS) algorithm for
estimating ᾱ∗ impossible since it needs ỹN (ᾱ∗, t). However,
we propose the utilization of a modified RLS algorithm as
follows

˙̄̂α = −PETCT (ỹN ( ˆ̄α) + CE ˆ̄α), ˆ̄α(0) = ˆ̄α0

Ṗ = −PETCTCEP, P (0) = γI
(24)

where ˆ̄α is the estimation of ᾱ∗, ỹN ( ˆ̄α) = y − Cx̂N ( ˆ̄α),
I is the identity matrix, and γ is a positive constant. In
addition, using the fact that E(t) is independent of ᾱ∗, its
ith column can be obtained using x̂N ( ˆ̄α, t)− x̂i( ˆ̄α, t). It will
be shown that the modified RLS algorithm is able to provide
an estimation of ᾱ∗ which is appropriate for estimating x(t).

Finally, the state estimation is calculated as follows

˙̂xi( ˆ̄α) = Ax̂i( ˆ̄α) +H(y − Cx̂i( ˆ̄α)) +Bf0(x̂o, u)

x̂o =
N−1∑
i=1

α̂ix̂i( ˆ̄α) + (1−
N−1∑
i=1

α̂i)x̂N ( ˆ̄α)
(25)



By considering (24) and (25), it is obvious that the pro-
posed MHGO is consisted of two interconnected systems.
Consequently, it is required to investigate its stability and
estimation converges, which is the goal of following theorem.

Theorem 1: Let for (1), x ∈ D and u ∈ B. Then for
(24) and (25), there exist some ϵ∗ > 0 such that by choosing
0 < ϵ ≤ ϵ∗, the obtained state estimation from (25) converges
to x. In addition, x̂is are uniformly ultimately bounded, and
ˆ̄α and P are bounded.

Proof. Consider the scaled error (9), hence one can define
Dηi = x− x̂i and use (25) and

∑N
i=1 α̂i = 1 to obtain

ϵη̇i( ˆ̄α) = A1ηi( ˆ̄α) + ϵB[f(x, u)− f0(x−D(ϵ)η, u)]

η =
N−1∑
i=1

α̂iηi( ˆ̄α) + (1−
N−1∑
i=1

α̂i)ηN ( ˆ̄α)
(26)

In addition, by defining DE = E1 and using CD(ϵ) =
ϵn−1C, the RLS algorithm (24) is considered as

˙̄̂α = −ϵ2(n−1)PET
1 C

TC(ηN ( ˆ̄α) + E1 ˆ̄α)

Ṗ = −ϵ2(n−1)PET
1 C

TCE1P
(27)

It is worth noting that the ith column of E1 is equal to
ηi( ˆ̄α)− ηN ( ˆ̄α). Therefore, it is valid to say that

ϵĖ1 = A1E1 (28)

Using the fact that A1 is Hurwitz, it can be shown that there
exist positive constants k1 and λ1 such that

∥e 1
ϵA1t∥ ≤ k1e

−λ1
ϵ t (29)

One can conclude from the preceding equation and (28) that

∥E1(t)∥ ≤ k1∥E1(0)∥e−
λ1
ϵ t (30)

In order to prove the boundedness of P (t), one can
consider the facts that it is a positive definite matrix and
Ṗ (t) ≤ 0. Hence, P (t) ≤ P (0), i.e., P (t) is bounded.

Now, for showing the stability of MHGO, let us to employ
(26) and the definition of E1 to obtain

η = E1 ˆ̄α+ ηN ( ˆ̄α) (31)

Therefore, one can employ (27) and get

˙̄̂α = −ϵ2(n−1)PET
1 C

TCη (32)

For obtaining the observation error system, one needs to
obtain η̇ from (31) and use (26), (28), and (32), which follows

η̇ =
1

ϵ
A1η − ϵ2(n−1)E1PET

1 C
TCη

+B[f(x, u)− f0(x−D(ϵ)η, u)]

One can use the preceding equation and a Lyapunov function
candidate V (η) = ηTP1η with AT

1 P1+P1A1 = −I to obtain

V̇ (η) = −1

ϵ
ηT η − 2ϵ2(n−1)ηTP1E1PET

1 C
TCη

+ 2ηTP1B[f(x, u)− f0(x−D(ϵ)η, u)]
(33)

If we employ (12), ∥B∥ = 1, and define ϵ∗ = 1
4L1∥P1∥ , then

by choosing 0 < ϵ ≤ ϵ∗ we have

V̇ (η) ≤ − 1

2ϵ
∥η∥2 + 2ϵ2(n−1)∥P1∥∥E1∥2∥P∥∥η∥2

On the other hand, since P (t) is bounded, it is valid to say
that there exists a positive constant p̄ such that ∥P (t)∥ ≤ p̄.
Consequently, using (30) and (14), one has

V̇ (η) ≤ (− 1

2ϵλmax(P1)
+

1

λmin(P1)
ρe−2

λ1
ϵ t)V (η)

where ρ = 2ϵ2(n−1)p̄k21∥P1∥∥E1(0)∥2. From the preceding
equation, one can get V (t) ≤ k2(t)e

− 1
2ϵλmax(P1)

t
V (0) where

k2(t) = e
ϵ

2λmin(P1)λ1
ρ(1−e−2

λ1
ϵ

t). It can be seen that k2(t) ≤
k̄2 with k̄2 = e

ϵ
2λmin(P1)λ1

ρ. As a result, we have

V (t) ≤ k̄2e
− 1

2ϵλmax(P1)
t
V (0) (34)

Finally, by using (14), one can get

∥η(t)∥ ≤ k3e
− 1

4ϵλmax(P1)
t∥η(0)∥ (35)

where k3 =
√
k̄2

λmax(P1)
λmin(P1)

. Therefore, we have lim
t→∞

η(t) =

0; in other words, the obtained state estimation x̂o(t) con-
verges to the state x(t).

For ˆ̄α, one can take the integral of (32) and obtain

ˆ̄α(t) = ˆ̄α0 − ϵ2(n−1)

∫ t

0

P (τ)ET
1 (τ)C

TCη(τ)dτ

Now, let us to use ∥P∥ ≤ p̄, (30), and (35) to get

∥ ˆ̄α(t)∥ ≤ ∥ ˆ̄α0∥+ k4

∫ t

0

e
− 1

ϵ (λ1+
1

4λmax(P1)
)τ
dτ

with k4 = ϵ2(n−1)p̄k1k3∥E1(0)∥∥η(0)∥; thus ˆ̄α is bounded.
For x̂is, we consider a Lyapunov function candidate

Vi(ηi) = ηTi P1ηi and employ (26) to obtain

V̇i(ηi) ≤ −1

ϵ
∥ηi∥2 + 2L1∥P1∥∥ηi∥∥η∥

On the other hand, from (35) we have ∥η(t)∥ ≤ k3∥η(0)∥.
Therefore, V̇i(ηi) < 0 for ∥ηi∥ > 2ϵL1k3∥P1∥∥η(0)∥, and
one can use the boundedness of x and conclude that x̂is are
uniformly ultimately bounded. �

The presented theorem states that MHGO is stable and
its estimation converges to the state of the plant. Now, it is
required to show that MHGO is also able to provide better
estimation in comparison to single HGO. In this regard, one
can add ±E1(t)ᾱ

∗ to the right hand side of (31) and employ
(22) to obtain the following equation

η = E1 ˜̄α+ σ( ˆ̄α) (36)

where ˜̄α = ˆ̄α − ᾱ∗ and σ( ˆ̄α) = ηN ( ˆ̄α) − ηN (ᾱ∗). In
order to analyze the preceding equation, one needs to ob-
tain σ( ˆ̄α). Toward this end, from its definition, we have
σ( ˆ̄α(0), 0) = 0. Moreover, by employing (26) and the fact



that ϵη̇i(ᾱ∗) = A1ηi(ᾱ
∗), one can get σ̇( ˆ̄α) = 1

ϵA1σ( ˆ̄α) +
B [f(x, u)− f0(x−Dη, u)]. As a result, it is valid to say

σ( ˆ̄α(t), t) =

∫ t

0

e
1
ϵA1(t−τ)B[f(x(τ), u(τ))

− f0(x(τ)−Dη(τ), u(τ))]dτ

and by using (12) and (29), we have

∥σ( ˆ̄α(t), t)∥ ≤ ϵ

λ1
k1L1 sup

0≤τ≤t
∥η(τ)∥ (37)

Now, we need to obtain ˜̄α in (36); therefore, (32) and (36)
are considered to get

˙̄̃α = −ϵ2(n−1)PET
1 C

TC(E1 ˜̄α+ σ( ˆ̄α)) (38)

On the other hand, one can consider dP−1

dt = −P−1ṖP−1,
(27), and (38) to obtain d(P−1 ˜̄α)

dt = −ϵ2(n−1)ET
1 C

TCσ( ˆ̄α).
Then, one can take the integral of previous equation and
premultiply it by P (t) to get

˜̄α(t) = P (t)P (0)−1 ˜̄α0

− ϵ2(n−1)P (t)

∫ t

0

E1(τ)
TCTCσ( ˆ̄α(τ), τ)dτ

(39)

To obtain P (t) in (39), dP−1

dt = −P−1ṖP−1 and (27) can
be used to have dP−1

dt = ϵ2(n−1)ET
1 C

TCE1. By taking the
integral of preceding equation, one has P (t)

−1 −P (0)−1 =
ϵ2(n−1)

∫ t

0
E1(τ)

TCTCE1(τ)dτ . Now, one can use E1(t) =

e
1
ϵA1tE1(0) and P (0) = γI to get

P (t) =

[
1

γ
I + ϵ2(n−1)E1(0)

TWo(t)E1(0)

]−1

where Wo(t) =
∫ t

0
e

1
ϵA

T
1 τCTCe

1
ϵA1τdτ is the observ-

ability Gramian. Since the pair (A1, C) is observable,
Wo(t) is a positive definite matrix. On the other hand, to
proceed with the analysis, it is assumed that E1(0) has
full column rank. Therefore, E1(0)

TWo(t)E1(0) has full
rank; and in turn, by choosing γ big enough such that
γϵ2(n−1)λmin(E1(0)

TWo(t)E1(0)) ≫ 1 for all t > 0, it
can be obtained

P (t) ≈ 1

ϵ2(n−1)

[
E1(0)

TWo(t)E1(0)
]−1

It is worth noting that the preceding equation can be easily
shown by employing the Jordan form of E1(0)

TWo(t)E1(0).
Now, substituting P (t) in (39) results

˜̄α(t) ≈ 1

γϵ2(n−1)

[
E1(0)

TWo(t)E1(0)
]−1

˜̄α0

−
[
E1(0)

TWo(t)E1(0)
]−1

∫ t

0

E1(τ)
TCTCσ( ˆ̄α(τ), τ)dτ

Since E1(0)
TWo(t)E1(0) has full rank, its inverse is

bounded; therefore, there exists a positive constant b

such that ∥
[
E1(0)

TWo(t)E1(0)
]−1 ∥ ≤ b. Now (30) and∫ t

0
e−

λ1
ϵ τdτ ≤ ϵ/λ1 can be used to obtain

∥E1(t) ˜̄α(t)∥ ≤ 1

γϵ2(n−1)
k1b∥E1(0)∥∥ ˜̄α0∥

+
ϵ

λ1
k21b∥E1(0)∥2 sup

0≤τ≤t
∥σ( ˆ̄α(τ), τ)∥

(40)

By using (37) and the fact that the supremum of a function
is its least upper bound, one can get

sup
0≤τ≤t

∥σ( ˆ̄α(τ), τ)∥ ≤ ϵ

λ1
k1L1 sup

0≤τ≤t
∥η(τ)∥

Now one can employ the preceding equation, (36), and
(40) to obtain

∥η(t)∥ ≤ 1

γϵ2(n−1)
k1b∥E1(0)∥∥ ˜̄α0∥

+ (
ϵ

λ1
k21b∥E1(0)∥2 + 1)

ϵ

λ1
k1L1 sup

0≤τ≤t
∥η(τ)∥

From the previous equation it can be concluded that
sup ∥η(τ)∥ is also less than the right hand side. On the other
hand, there exists ϵ∗1 > 0 such that by chossing 0 < ϵ < ϵ∗1,
the inequality 1− ( ϵ

λ1
k21b∥E1(0)∥2+1) ϵ

λ1
k1L1 > 0 is valid.

Therefore, we obtain

sup
0≤τ≤t

∥η(τ)∥ ≤
1

γϵ2(n−1) k1b∥E1(0)∥∥ ˜̄α0∥
1− ( ϵ

λ1
k21b∥E1(0)∥2 + 1) ϵ

λ1
k1L1

(41)

To show that the proposed MHGO provides a better
estimation, we need to analyze the estimation error of a
single HGO in a similar way. Hence, one can compare (3)
with (8) and see that single HGO’s estimation is equal to
MHGO estimation with the same initial condition and fixed
α̂is; in other words x̂(t) =

∑N
i=1 α̂i(0)x̂i(α0, t) where α0 =[

α̂1(0) · · · α̂N (0)
]T . Thus, ηs = D(ϵ)−1x̃ is ηs(t) =

E1(t) ˜̄α0+σ( ˆ̄α0, t) where σ( ˆ̄α0, t) = ηN ( ˆ̄α0, t)−ηN (ᾱ∗, t).
Now similar to MHGO, by choosing 0 < ϵ < ϵ∗1, the
following equation can be obtained

sup
0≤τ≤t

∥ηs(τ)∥ ≤ k1∥E1(0)∥∥ ˜̄α0∥
1− ϵ

λ1
k1L1

(42)

One can consider (41) and (42) and conclude that for the
same ϵ, by choosing γ big enough, the proposed MHGO
can result in a better estimation.

III. SIMULATION RESULTS

In this section, simulation is performed on a pendulum to
demonstrate the capability of the proposed MHGO method in
providing accurate state estimations. The equation of motion
of a pendulum in the tangential direction is as follows [2]:

mlθ̈ = −mg sin θ − klθ̇ (43)

where m is the mass of the bob, l is the length of the rod,
θ is the angle, g is the acceleration due to gravity, and k
is the coefficient of friction. The state variables are x1 =
θ, x2 = θ̇, and y = θ is the output of the system. The
parameters and initial condition of system states are selected
as l = g/10, m = k, and x(0) =

[
π/2 0

]T . To estimate
the system states, three HGOs with the initial conditions of
x̂1(0) =

[
+5 +5

]T , x̂2(0) =
[
−5 +5

]T , and x̂3(0) =[
+5 −5

]T and design parameters κ1 = 2, κ2 = 1, and
ϵ = 0.05 are utilized. It is obvious that x(0) is in the convex
hull of x̂i(0)s. Furthermore, a saturated version of f(x) is
employed as f0(x̂o) = 200 tanh(f(x̂o)/200).
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Fig. 1: Estimation error of pendulum states using one HGO
and MHGO for ϵ = 0.05.

To estimate α∗
i s, the RLS algorithm with the initial con-

ditions ˆ̄α0 =
[
0.35 0.35

]T and P (0) = γI2 is utilized.
In order to demonstrate that by choosing γ big, the pro-
posed MHGO results in better estimation, the simulation
is performed for two different values, i.e., γ = 101 and
γ = 108. Moreover, to compare the performance of the
proposed strategy to single HGO, simulation results are also
provided using a single HGO with the same f0, design
parameters κis and ϵ, and the initial condition, i.e., x̂(0) =∑3

i=1 α̂i(0)x̂i(0) =
[
1.5 2

]T
. Fig. 1 depicts the estimation

error of the single HGO, x̃(t), compared to the estimation
errors of MHGO. It can be seen that the proposed method
results in a more desirable estimation when γ is chosen big.

To show that not only MHGO estimation converges fast,
but also it has solved the peaking problem, the simulation
is also performed for ϵ = 0.001. The simulation results for
single HGO and MHGO with γ = 101 and γ = 108 are
expressed in Fig. 2. It can be seen that choosing ϵ small
results in the fast convergence of HGO estimation, but it
also produces undesirable peaks. Furthermore, for MHGO,
choosing γ big enough solved the peaking problem and also
the estimation converged faster.

IV. CONCLUSIONS

A new MHGO method was presented to find state estima-
tions of nonlinear systems. The method combines estimations
provided by multiple HGOs to obtain a more accurate
estimation. The existence of required parameters was shown,
and they were estimated using the RLS algorithm. Moreover,
it was guaranteed that state estimations converge to the state
of the plant, and it yields better transient response. The
simulation results demonstrate that the consequence of using
the proposed observer is a more accurate state estimation
with more preferable transient response in comparison to
single HGO.
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